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Intro

Even for wine enthusiasts, having the ability to
precisely determine the particularly good quality
of a wine from its meteorological growth condi-
tions and grape variety without waiting for tasting-
based recommendations can be very challenging.
That is what motivated us to leverage Deep Learn-
ing tools to assess this problem. Therefore, our
objective is to combine efficiently the grape va-
riety and growth’s meteorological conditions of a
wine to predict its quality without tasting it us-
ing trained Deep Learning models with consumer-
based ratings and prior meteorological conditions.

Wine data collection

To build our wine database, we used the Vivino
consumer-based application data. Moreover, we
scrapped their open API in order to retrieve french
red wines with vintages from 2010 to 2024. Vivino’s
API restricts scrapping to 80 pages so we had to
roll consecutive scrapings with continuous ranges
of price. Finally, we achieved scrapping 10k french
red wines from vintages between 2010 and 2024,
keeping for each wine :

Wine: wine’s name (str)

Winery: wine’s winery (str)

Year: wine’s vintage from 2010 to 2024 (int)
Price: wine’s current price on market (float)

Vintage rating: wine’s customer rating for this
vintage between 0 and 5 (float)

Vintage rating count: wine’s number of cus-
tomer rating (int)

Region: wine’s region (the scale of the region is
very sparse, can go from "bordeaux" to "st-
emilion-grand-cru") (str)

Cepages: wine’s cepages present in its composi-
tion ordered by decreasing importance. (str)

Wine data preprocessing

Once our wine dataset created, we needed to fig-
ure out a way to label our data according to an
outstanding wine quality. This label would be a
balance of price and rating that represents the in-
credible potential of a wine thus labeled 1 and 0
either.

We started by normalizing the wine prices by year
so as to avoid inflation effects on prices which
would have an important impact on our quality
indicator, penalizing older wines. To ensure ro-
bust comparison across wines, we compute a Wine
Quality Indicator (WQI) combining adjusted rat-
ing and normalized price. First, we estimate a
Bayesian average rating:

U‘R+m

WR = C

v+m U—I—m.

where v is the number of ratings, R the average
rating, m the median number of ratings, and C
the mean rating. This smooths low-sample vin-
tages toward the global average. We then nor-
malize W R by dividing by 5:

WRN = WR/5.

Finally, we compute WQI = WRN X Wpyyice, re-
warding high-rated, good-value wines relative to
their vintage and region.

We then plotted distributions of WQI for com-
binations of regions and cepages to evaluate a
threshold to apply in order to select outstanding
quality wines. We decided to choose the 65th
percentile as the threshold for each cepages/re-
gion combination so as to decide whether a wine
is of outstanding quality or not respectively 1 or
0 label.

Meteorological data collection

We sourced our weather observations from the
open-data portal of Météo-France. Our workflow
unfolded as follows:

1. Select the relevant départements. We
first listed every French département that
intersects a vineyard area included in this
study.

2. Combine the two historical files. Météo-
France provides daily climatological records
in two archives, 1950-2023 and 2024-2025.
After downloading both, we concatenated
them into a single dataset so that each sta-
tion’s time series is continuous.


https://www.vivino.com/FR/fr/
https://www.data.gouv.fr/datasets/donnees-climatologiques-de-base-quotidiennes/
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3. Filter out incomplete stations. Any sta-
tion whose series contained too many miss-
ing values (threshold defined in the prepro-
cessing notebook) was discarded to preserve
data quality.

4. Create one file per calendar year. In-
stead of grouping all years together, we re-
built the dataset so that each output file
contains every selected département for one
given year. This structure speeds up year-
by-year analyses and model training.

5. Restrict the time span. Finally, we kept
only observations from 2010 onward, as ear-
lier data fall outside the analytical window
of the project.

This cleaned and re-structured collection now
forms the meteorological baseline for our subse-
quent modelling steps.

Meteorological data Preprocessing

Because grapevines in temperate Europe develop
mainly from April to September, we restricted
our climatic analysis to this six-month window.
This choice is supported by three studies: [? ? ?
|.

Guided by the metrics proposed in these pa-
pers, we engineered the following agro-climatic
variables:

GDD Growing Degree Days accumulated from
April to September, a proxy for heat avail-
able to the vine.

TMgummer Mean daily temperature over the
summer core (June-August).

TXsummer Mean daily maximum temperature
for the same period.

temp ampsymmer Diurnal temperature range

(TX — TN) averaged over summer, indicat-
ing day—night amplitude.

hot days Count of days with TX > 35°C, sig-
nalling potential heat stress.

rainy daySsummer Number of days with precip-
itation > 1 mm between June and August.

rain_June Total rainfall in June, relevant for
flowering and berry set.

rain _SepOct Cumulative rainfall during Septem-
ber—October, affecting harvest conditions and
botrytis risk.

Lab 1

frost daysapr Days in April with TN < 0°C,
capturing late-frost hazards to young shoots.

avg TMap: Average daily temperature in April,
a cue for bud-break timing.

Together, these features constitute the climate
signature fed to our learning algorithms, enabling
them to relate intra-seasonal weather patterns to
subsequent wine-quality outcomes.

Wine—Meteo Integration Pipeline

To combine each wine sample with representative
climate data for its vintage, we implemented a
spatial-temporal merging workflow:

Appellation Geocoding
Fuzzy-match Vivino AOC strings to refer-
ence polygons, reproject from EPSG:2154
to WGS84 and compute each appellation’s
centroid and deduplicate overlapping AOCs
to yield a unique (region — latitude, longi-
tude) lookup for approximately 10 000 wines.

Region—Year Grid Construction
Cross-join the set of centroids with years
20102024, producing a complete (region,
year) table while preserving all region meta-
data for subsequent joins.

Nearest-Station Climate Attachment

Load cleaned, per-station annual weather (2010-2024)

containing ten agro-climatic metrics. For
each year, index station coordinates in a
haversine-metric BallTree and query the clos-
est station for every region centroid. Mark
any region whose nearest station is > 40 km
away as “‘unmatched”, their weather will be
NaN.

Final Wine—Weather Join and Curation
We parse and retain only the dominant cé-
page per wine (i.e. the first grape variety);
convert vintage to year. We can then merge
the Vivino table to the enriched (region, year)
climate table, and drop rows lacking essen-
tial data (cépage, year, or core climate met-
rics).

Outcomes
Each wine record carries its price, dominant grape

variety, appellation embedding, and a ten-dimensional

climate signature for the growing season, for a
clean merged dataset of ~ 10 000 samples.

2024-2025
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Context of the problem

We adopt a temporal hold-out design to test
model robustness under contrasting vintage con-
ditions: vintages 2018 (a “good” year for french
wine) and 2021 (a notably “poor” year) compose
our test set, while all other vintages serve as train-
ing data. This yields approximately 8000 training
samples and 2000 test samples.

Each wine instance is encoded by:

e Agro-climatic sequence: 10-dimensional vec-
tor of climate variables from Météo-France
station records, as specified in item

e Economic indicator: the vintage’s price, nor-
malized within each year to correct for in-
flationary and market dynamics.

e Varietal embedding: the principal cépage,
represented as a learned categorical embed-
ding.

e Geolocation embedding: the appellation (“re-

gion”) and its linked Météo-France station
ID, each encoded categorically.

Baseline models

We evaluate four classical baselines—Logistic Re-

gression, Random Forests, XGBoost, and Histogram-

based Gradient Boosting (HGB)—under a com-
mon preprocessing and optimisation pipeline. All
models use a 5-fold cross-validated grid search over

carefully selected hyper-parameter spaces, and their

test-time performance is summarised below:

Model Accuracy F;-score
XGBoost 0.7683 0.6510
Logistic Regression 0.7615 0.7295
Random Forest 0.7315 0.6895
HGBClassifier 0.7379 0.6903

Despite the more advanced ensembling capabil-
ities of XGBoost and HGB, Logistic Regression

achieves the highest F1-score and ROC-AUC—suggesting

that, given appropriate regularisation and class
balancing, linear models remain strong contenders
for this task. Overall, all models exceed 0.73 in ac-
curacy, confirming the robustness of classical ap-
proaches before introducing deep learning archi-
tectures.

Lab

Multilayer Perceptron (MLP)

Our final tabular network follows the same design
described in class, but adapted to our data and
evaluation constraints:

e Embedding layers. All three categorical
columns—station, region, and cepages—
are mapped to dense vectors whose dimen-

sionality is [v/|Veo1|/2] (with an UNK token

for unseen values).

e Dense backbone. Two hidden blocks of

size 128 — 64 with ReLLU, batch-normalisation

and a dropout of 0.1, followed by a linear
output layer.

o Loss re-weighting. Class weights are in-

versely proportional to their frequency (pos/neg =

0.35) to curb the bias toward the majority
class.

e Optimisation. Adam (n = 1x107%) with
Ly regularisation (107°) and a maximum of
1500 epochs;

e Threshold tuning. A validation PR-curve
is scanned and the smallest threshold achiev-
ing Recall > 75% and the greatest Preci-
sion is chosen; for the reported run this gives
7*=0.63.

Hyper-parameters.

Hidden layers [128, 64]
Activation ReLU
Batch-norm False
Dropout 0.10
Learning rate 1x1074
Weight decay 1x107°

Batch size 512
Max / early stop 1500 / patience 10

Test performance (single best model, 7% = 0.63).

Class Precision Recall Fy
0 (negative) 0.92 0.82 0.87
1 (positive) 0.72 0.87 0.80
Accuracy 0.842

The model therefore meets the business re-
quirement of “high precision first”: although the
recall is slightly lower than 90 %, the precision re-
mains above 70 %, resulting in an Fy close to 0.80
and an overall accuracy of 0.84 on unseen data.

2024-2025
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FT Transformer

Our final transformer-based model adapts the ar-
chitecture described in [? | to wine classification,
using stacked attention over feature tokens.

e Embedding layers. The three categor-
ical variables (station, region, cepages)
are mapped to trainable vectors. These are
concatenated with learned projections of nu-
meric features to form a token sequence per
wine.

e Feature tokenisation. Numeric features
are z-normalised and individually projected
into d-dimensional vectors using a learned
affine transform. A learnable CLS token is
prepended to every sequence.

e Encoder stack. The model includes 6 Trans-

former encoder blocks, each with multi-head
self-attention (8 heads), post-layer normali-
sation, dropout (0.3), and a two-layer feed-
forward network with GELU activation and
6x expansion. Residual connections are ap-

plied both after the attention and feed-forward

layers.

e Loss re-weighting. Class imbalance is ad-
dressed using weighted cross-entropy, with
weights inversely proportional to class fre-
quency (pos/neg = 0.35).

e Optimisation. The model is trained with
AdamW (n = 3x10~%, weight decay 5x10™%),
using early stopping over 300 epochs.

Hyper-parameters.

dmodel 128

Layers (depth) 6

Attention heads 8

Feed-forward 2-layer MLP, expansion x6

Activation GELU

Dropout rate 0.30

Normalisation LayerNorm (post-residual)
Learning rate 3x 1074

Weight decay 5x 1074

Batch size 512
Max / early stop 300 / patience 10

Test performance (single best model, de-
fault threshold).

Class Precision Recall Fy
0 (negative) 0.89 0.80 0.84
1 (positive) 0.68 0.81 0.74
Accuracy 0.801

Lab

The FT-Transformer achieves robust general-
isation, with a 0.80 accuracy and a balanced F;
score which doesn’t outperform the MLP perfor-
mances even for a more complex architecture.

Conclusion

Deep learning model struggle on tabular data so
it is not too surprising to see that MLP is the one
that did the better job

Maybe try to implement tabpfn.

All the limits on the wine dataset, attribution
of dataset, other website for scraping, seing the
evolution of the wines using dated comments and
ratings.

From a borader point of view, it would have
been very interesting to further develop the study
by analyzing the temporal evolution of ratings for
a wine in order to being able to predict the quality
peak of a wine from its growth wather conditions
and grape variety.
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